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Abstract 1-(4-Aminoantipyrine)-3-tosylurea (H2L) and its
three lanthanide (III) complexes, M(H2L)3 3NO3 [where
M=Nd(III), Sm(III) and Eu(III)], have been synthesized
and characterized. In addition, the DNA-binding properties
of the three complexes have been investigated by UV–vis
(ultraviolet and visible) absorption spectroscopy, fluores-
cence spectroscopy, circular dichroism (CD) spectroscopy,
cyclic voltammetry, and viscosity measurements. Results
suggest that the three complexes bind to DNA via a groove
binding mode. Furthermore, the antioxidant activity (super-
oxide and hydroxyl radical) of the metal complexes was
determined by using spectrophotometer methods in vitro.
These complexes were found to possess potent antioxidant
activity and be better than standard antioxidants like
vitamin C and mannitol.
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Introduction

Sulfonylurea derivatives are the most widely prescribed
drugs for the treatment of the maturity onset form of
diabetes mellitus [1–4], and many of their ramifications had
been used as herbicide [5, 6] and anticancer [7, 8]. The
metal complexes of sulfonylurea also have many noticeable
bioactivities [9]. The synthesis of the complexes of
sulfonylurea plays an important role in researching the co-
operation between the metal ions and the ligand and
exploring the mechanism of the molecular biology [10].
Investigation on molecular complexes of lanthanide ions
has been attracted significant attention, owing to their
fluorescent broad applications in biochemistry, material
chemistry, medicine and so forth [11–13]. Yet it is noticed
that the DNA-binding investigation of such complexes have
been relatively few. We have previously reported [14] on
the synthesis and characterization of several lanthanide
complexes with sulfonylurea ligands. In light of our
research, we have concluded that the precise nature of the
ligands is of remarkable importance in the interaction of the
complex with the DNA molecule. Therefore, extensive
studies with different structural ligands are necessary in
order to understand and evaluate the factors that determine
both the DNA-binding mode and the biological activity of
their complexes.

However, up to now the biological activity and inter-
actions of 4-aminoantipyrine and ethyl N-(3-tossulfonyl)
carbamate and their complexes with DNA have not been
reported. This aroused our interest in synthesis of a new
ligand 1-(4-aminoantipyrine)-3-tosylurea, and its Nd(III),
Sm(III) and Eu(III) complexes in view of evaluating their
pharmaceutical activities.
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Experimental section

Materials and physical measurements

All reagents and solvents were purchased commercially and
used without further purification unless otherwise noted.
Calf thymus DNA (CT-DNA) was obtained from Sigma
Chemicals Co. (USA) and used as received. Solutions of
CT-DNA in 50 mM NaCl, 5 mM Tris–HCl (tris(hydrox-
ymethyl)aminomethane hydrochloride) (pH 7.2) gave a
ratio of UV–Vis absorbance of 1.8–1.9:1 at 260 and
280 nm, indicating that the DNA was sufficiently free of
protein [15]. The concentration of DNA was determined
spectrophotometrically using a molar absorptivity of
6,600 M−1 cm−1 (260 nm) [16]. Double-distilled water
was used to prepare buffers.

Carbon, hydrogen, and nitrogen were analyzed on an
Elemental Vario EL analyzer. Infrared spectra (4,000–
400 cm−1) were determined with KBr disks on a Therrno
Mattson FTIR spectrometer. The UV–visible spectra were
recorded on a Varian Cary 100 UV–Vis spectrophotometer.
1H NMR spectra were measured on a Varian VR 300-MHz
spectrometer, using TMS as a reference in DMSO-d6. Mass
spectra were performed on a VG ZAB-HS (FAB) instru-
ment and electrospray mass spectra (ESI-MS) were
recorded on a LQC system (Finngan MAT, USA) using
CH3OH as mobile phase.

Absorption titration experiment was performed with
fixed concentrations of the drugs, while gradually increas-
ing concentration of DNA. While measuring the absorption
spectra, an equal amount of DNA was added to both
compound solution and the reference solution to eliminate
the absorption of DNA itself. In order to compare
quantitatively the binding strength of the three complexes,
the intrinsic binding constants Kb of the three complexes
with DNA were obtained by monitoring the changes in
absorbance at 205 nm for the complex 1, complex 2 and 3
with increasing concentration of DNA using the following
equation [17]:

DNA½ �= "a � "fð Þ ¼ DNA½ �= "b � "fð Þ þ 1=Kb "b � "fð Þ
ð1Þ

where [DNA] is the concentration of DNA in base pairs, the
apparent absorption coefficient ɛa, ɛf and ɛb correspond to
Aobsd/[M], the extinction coefficient of the free compound
and the extinction coefficient of the compound when fully
bound to DNA, respectively. In plots of [DNA]/(ɛa−ɛf)
versus [DNA], Kb is given by the ratio of slope to the
intercept.

Fluorescence spectra were recorded on a Hitachi RF-
4500 spectrofluorophotometer. Fixed amounts (10 μM) of
the complexes were titrated with increasing amounts of CT-

DNA. Excitation wavelength of the samples were 338 nm,
scan speed=240 nm/min, slit width 10/10 nm. All experi-
ments were conducted at 20 °C in a buffer containing 5 mM
Tris–HCl (pH 7.2) and 50 mM NaCl concentrations.

Viscosity experiments were conducted on an Ubbelodhe
viscometer, immersed in a thermostatted water-bath main-
tained at 25±0.1 °C. Data were presented as (η/η0)

1/3 versus
the ratio of the concentration of the compound to CT-DNA,
where η is the viscosity of CT-DNA in the presence of the
compound and η0 is the viscosity of CT-DNA alone.
Viscosity values were calculated from the observed flow
time of CT-DNA containing solutions corrected from the
flow time of buffer alone (t0), η= t− t0 [18].

The CD (circular dichroic) spectra were recorded on an
Olos RSM 1000 at increasing complex/DNA ratio (r=0.0,
0.5). Cyclic voltammetry experiments were performed at
room temperature under an inert atmosphere (N2) with a
conventional three-electrode electrochemical cell, and using
a CHI-420 electrochemical workstation (made in Shanghai,
China).

In antioxidant activity experiments the superoxide
radicals (O��

2 ) were generated in vitro by non-enzymatic
system and determined spectrophotometrically by nitro blue
tetrazolium (NBT) photoreduction method with a little
modification in the method adopted elsewhere [19, 20]. The
amount of O��

2 and suppression ratio for O��
2 can be

calculated by measuring the absorbance at 560 nm. Solu-
tion of MET, VitB2 and NBT were prepared at avoiding
light. The tested compounds were dissolved in DMF (N,N-
dimethylformamide). The assay mixture, in a total volume
of 5 ml, contained MET (10 mM), NBT (46 μM), VitB2

(3.3 μM), the tested compound (10–30 μM) and a
phosphate buffer (67 mM, pH 7.8). After illuminating with
a fluorescent lamp at 30 °C for 10 min, the absorbance of
the samples (Ai) was measured at 560 nm. The sample
without the tested compound was used as control and its
absorbance was A0. All experimental results were expressed
as the mean±standard deviation (S.D.) of triplicate deter-
minations. The suppression ratio for O��

2 was calculated
from the following expression:

Suppression ratio %ð Þ ¼ A0 � Ai=A0 � 100 ð2Þ
Drug activity was expressed as the 50% inhibitory

concentration (IC50). IC50 values were calculated from
regression lines where: x was the tested compound
concentration in mM and y was percent inhibition of the
tested compounds.

In antioxidant activity experiments the hydroxyl radicals
(OH�) in aqueous media were generated through the Fenton
system [21]. The solution of the tested compound was
prepared with DMF. The 5 ml assay mixture contained
following reagents: safranin (11.4 μM), EDTA–Fe(II)
(40 μM), H2O2 (1.76 mM), the tested compound (10–
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30 μM) and a phosphate buffer (67 mM, pH 7.4). The assay
mixtures were incubated at 37 °C for 30 min in a waterbath.
After which, the absorbance was measured at 520 nm. All the
tests were run in triplicate and expressed as the mean±standard
deviation (S.D.).

The suppression ratio for OH� was calculated from the
following expression:

Suppression ratio %ð Þ ¼ Ai � A0ð Þ= Ac � A0ð Þ½ � � 100 ð3Þ
(where Ai=the absorbance in the presence of the tested
compound; A0=the absorbance in the absence of the tested
compound; Ac=the absorbance in the absence of the
tested compound, EDTA–Fe(II), H2O2.)

Preparation of the ligand (H2L)

The preparation of the ligand is shown in Fig. 1. A mixture
of p-Toluene Sulfonamide (5.14 g, 0.03 mol) and finely
pulverized K2CO3 (11 g, 0.078 mol) in 35 ml of acetone
was stirred and heated to reflux for 30 min. Acetone
solution (10 ml) of ethyl chloroformate (3.8 ml, 0.04 mol)
was added neat to the refluxing mixture. The mixture of the
results were poured into 100 ml of H2O, then the aqueous
phases was acidified with 10 ml of 1.0 N aqueous HCl to
get the solid, washed with 80 ml H2O for several times.
Recrystallization from 20 ml ethanol provided 6.35 g (87%)
of ethyl N-(3-tossulfonyl) carbamate as a white crystalline
solid.

A solution of ethyl N-(3-tossulfonyl) carbamate
(730 mg, 3 mmol) and 4-aminoantipyrine (589 mg,
2.9 mmol) in 20 ml acetonitrile was heated to reflux for
10 h. After the solution stood overnight at room tempera-
ture, the resulting precipitate was collected, washed twice
time with acetonitrile. Recrystallisation from 1:1 (v/v)
acetonitrile/H2O gave the ligand, which was dried in
vacuum to afford 960 mg (89%) of a white solid: mp
182–184 °C; 1H NMR (DMSO-d6) δ 2.05 (bm, 4H), 2.36
(s,3H), 3.00 (s,3H), 7.30–7.28 (m, 3H), 7.52–7.37 (m, 4H),

7.62 (bs, 1H), 7.79–7.85 (m, 2H), 11.44 (bs, 1H).FAB-MS:
m/z=401 [M+H]+. Anal. Calcd for C20H21N3O4S: C, 56.99;
H, 5.03; N, 13.99. Found: C, 56.81; H, 4.95; N, 14.06. IR
νmax (cm−1): ν(aminoantipyrine) (C=O): 1,719 cm−1, ν(carbonyl)
(C=O): 1,628 cm−1, ν(–SOONH–) (N–H): 3,728 cm−1. Umax:
(nm) 205, 227.

Preparation of the complexes

The Nd(NO3)3·6H2O (219.1 mg, 0.5 mmol) in ethanol
(10 ml) was added to the solution containing the ligand
(200 mg, 0.5 mmol) in ethanol (10 ml). The mixture was
stirred. After 24 h, the precipitate of Nd(III) complex
formed. The precipitate was separated by the centrifugal
and washed seven times with ethanol and one time with
ether, and finally dried in vacuo. The Sm (III) and Eu(III)
complexes were synthesized by the same way. Anal. Calcd
for complex 1 C60H63N12O21S3Nd: C, 47.28 (47.14); H,
4.17 (4.15); N, 11.21 (11.00); Nd, 9.38 (9.44).

Λm (s cm2 mol−1): 221.6. ESI-MS [CH3OH, m/z]: 1,526.3
({[Nd(H2L)3·3NO3]+H}

+), 1,337.2 ({[Nd(H2L)3 3NO3]–
3NO3–2H}

+), 940.2 ({[Nd(H2L)3 3NO3]–3NO3–H2L–
2H}+), 540.1 ({[Nd(H2L)3·3NO3]–3NO3–2H2L–2H}

+). IR
νmax (cm−1): ν(aminoantipyrine) (C=O): 1,700 cm−1, ν(carbonyl)
(C=O): 1,615 cm−1, ν(–SOONH–) (N–H): 3,727 cm−1. Umax:
(nm) 205, 227, 272. Anal. Calcd for complex 2
C60H63N12O21S3Sm: C, 46.88 (46.95); H, 4.25 (4.14); N,
10.88 (10.95); Sm, 9.86 (9.80). Λm (s cm2 mol−1): 223.7.
ESI-MS [CH3OH, m/z]: 1,531.3 ({[Sm(H2L)3·3NO3]+H}

+),
1,347.3 ({[Sm(H2L)3·3NO3]–3NO3–2H}

+), 950.3 ({[Sm
(H2L)3 ·3NO3]–3NO3–H2L–2H}+) , 550.1 ({[Sm
(H2L)3·3NO3]–3NO3–2H2L–2H}+). IR νmax (cm−1):
ν(aminoantipyrine) (C=O): 1,700 cm−1, ν(carbonyl) (C=O):
1,613 cm−1, ν(–SOONH–) (N–H): 3,728 cm−1. Umax: (nm)
205, 227, 272. Anal. Calcd for complex 3 C60H63N12O21-

S3Eu: C, 46.85 (46.91); H, 4.19(4.13); N, 10.87 (10.94); Eu,
9.77 (9.89). Λm (s cm2 mol−1): 226.8. ESI-MS [CH3OH, m/
z]: 1,537.3 ({[Eu(H2L)3·3NO3]+H}+), 1,348.3 ({[Eu
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Fig. 1 The preparation of the
ligand
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(H2L)3·3NO3]–3NO3–2H}
+), 951.2 ({[Eu(H2L)3·3NO3]–

3NO3–H2L–2H}+), 551.1 ({[Eu(H2L)3·3NO3]–3NO3–
2H2L–2H}

+). IR νmax (cm−1): ν(aminoantipyrine) (C=O):
1,701 cm−1, ν(carbonyl) (C=O): 1,615 cm−1, ν(–SOONH–)
(N–H): 3,726 cm−1. Umax: (nm) 205, 227, 272.

Results and discussion

All of the complexes are air stable for extended periods and
remarkably soluble in DMSO and DMF; soluble in
methanol and slightly soluble in ethanol; insoluble in

benzene, water and diethyl ether, and can be kept in air
for a long time.

The structures of the complexes were characterized by
elemental analyses, molar conductivities and IR spectra.
The elemental analyses show that the formulas of the
complexes conform to M(H2L)3·3NO3 (M=Nd, Sm, Eu)
[where M=Nd(III), Sm(III) and Eu(III); H2L is the ligand
1-(4-aminoantipyrine)-3-tosylurea]. The molar conductivi-
ties in DMF solution indicate that the Nd(III) complex (1),
Sm(III) complex (2) and Eu (III) complex (3) (221.6, 223.7
and 226.8 S cm2 mol−1) are in the range expected for 3:1
electrolytes [22].

Fig. 2 Electronic spectra of the
complex 1 (a), 2 (c), 3 (e)
(10 μM) in the presence of 0,
20, 40, 60, and 80 μl 1.0×
10−3 M CT-DNA. Arrow shows
the emission intensities changes
upon increasing DNA concen-
tration. Inset plots of [DNA]/
(ɛa−ɛf) vs. [DNA] for the titra-
tion of complex 1 (b), 2 (d), 3
(f) with DNA
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Infrared spectra

The IR spectra of the complexes are similar. The
ν(aminoantipyrine) (C=O) and ν(carbonyl) (C=O) vibrations of
the free ligand are at 1,719 and 1,628 cm−1, respectively; for
the complexes these peaks shift to 1,700 and 1,615 cm−1,
Δν(ligand–complexes) is equal to 19 and 13 cm−1. The band at
the 1,316 cm−1 was ν(–SO2–) vibration in the ligand. In
the complexes this band is presented at 1,295 cm−1,
Δν(ligand–complexes) is to 21 cm−1. These data indicate that
the oxygen of the carbonyl has likely formed a coordination
bond with the rare earth ion [23]. In the complexes, the band
at 579 cm−1 or so is assigned to ν(M–O). These shifts
demonstrate that the ligand coordinated Nd3+, Sm3+ and

Eu3+ ions through the oxygen of carbonyl and sulphanila-
mide. The absorption band near 1,384 cm−1 indicates that
free nitrate is also present [24].

UV–vis spectra

The study of the electronic spectra in the ultraviolet and
visible ranges for the complexes and the ligand were
carried out in the buffer solution. The electronic spectra of
ligand had a strong band at λmax=205 nm, a medium band
at λmax=227 nm. The complexes also yield two bands. A
new band appeared at 272 nm for complex 1, 2 and
complex 3. These changes indicate that complexes are
formed.

Fig. 3 The fluorescence spectra
of complex 1 (a), 2 (c), 3 (e)
(10 μM) in the presence of 0,
20, 40, 60, 70, 80, 90 and
100 μl 1.0×10−3 M CT-DNA.
Arrow shows the emission in-
tensities changes upon increas-
ing DNA concentration. Inset
fluorescence binding isotherms
for the association of complex 1
(b), 2 (d), 3 (f) with DNA. The
binding stoichiometry in terms
of number of nucleotide bases/
drug molecule is the value at the
intersection of the two straight
lines
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DNA-binding studies

UV absorption titration

The application of UV absorption spectroscopy in DNA-
binding studies is one of the most useful techniques [25].
The absorption spectra of the complex 1, complex 2 and 3
in the absence and presence of CT-DNA (at a constant
concentration of complexes) are given in Fig. 2. In the
presence of DNA, the absorption bands of 1, 2 and 3 at
about 205 nm exhibited hypochromism of about 18.9%,
20.2% and 35.1% and bathochromism of about 3, 5 and
7 nm. The spectroscopic changes suggest that the com-
plexes have stronger interaction with DNA. The intrinsic
binding constants Kb of complexes 1,complex 2 and 3 were
3.18×105, 5.51×105 and 9.63×105 M−1, respectively. The
results indicate that the binding strength of complex 3 is
stronger than that of complex 1 and 2. The Kb value
obtained here is lower than that reported for classical
intercalator (for ethidium bromide and [Ru(phen)DPPZ]
whose binding constants have been found to be in the order
of 106–107 M) [26, 27]. Such a small change in λmax and
the observed binding constant is more in keeping with the
groove binding with DNA, as observed in the literature
[28].

Fluorescence spectra studies

Complex 1, complex 2 and 3 can emit fluorescence in Tris
buffer at ambient temperature, with a maximum appearing
at about 441 nm for complex 1, complex 2 and 3. As shown
in Fig. 3, the fluorescence intensity of the complexes are

increased steadily with the increasing concentration of the
CT-DNA, and emission maximum shift by 3 nm to longer
wavelength (445 nm) for complex 1 and 2, and no shift for
3. This effect arises, in the presence of DNA, the metal

Fig. 4 CD spectrum of CT-DNA adduct with compound. Black line
free CT-DNA, red line complex 1 with CT-DNA, ri=0.5. (ri=molar
ratio compound: CT-DNA) Green line complex 2 with CT-DNA, ri=
0.5; blue line complex 3 with CT-DNA, ri=0.5. (ri=molar ratio
compound: CT-DNA)

Fig. 5 Cyclic voltammogram of 0.50 mM complex 1 (a), complex 2
(b) and 3 (c). Supporting electrolyte, 100 mM NaClO4 in DMF, Sweep
rate, 50 mV/s. Arrow shows the current and potential changing upon
increasing DNA concentrations. (1=0, 0.02, 0.03 mM DNA), (2=0,
0.01, 0.02, 0.03 mM DNA) and (3=0, 0.02, 0.03 mM DNA)
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complex is bound in a relatively non-polar environment
compared to water. The increase in the fluorescence
intensity is less than that for the intercalators. The binding
site size was determined from the binding stoichiometry of
the complex-DNA isotherm as shown in Fig. 3. Knowledge
about the binding stoichiometry of the metal–sulfonylurea–
DNA complex would be helpful in characterizing the
geometry of the drug binding to DNA. The intersection
point of the binding isotherm, gives a binding site size of
8 bp per bound complex molecule. The binding site size
allows one to distinguish between intercalating and non-
intercalating binding agents [29]. Molecules showing large
binding site sizes are indicative of non-intercalation as a
probable mode of binding and they require correspondingly
lower concentrations to saturate the sites. The binding
isotherm of complex 1, complex 2 and 3 is again indicative
of non-intercalative binding of the complexes to DNA.

CD spectroscopy

Circular dichroic spectral techniques give us useful infor-
mation on how the conformation of DNA is influenced by
the binding of the metal complex to DNA. The observed
CD spectrum of calf thymus DNA consists of a positive
band at 277 nm due to base stacking and a negative band at
245 nm due to helicity, which is characteristic of DNA in
the right-handed B form. While groove binding and
electrostatic interaction of small molecules with DNA show
little or no perturbations on the base stacking and helicity
bands, intercalation enhances the intensities of both the
bands, stabilizing the right-handed B conformation of CT-
DNA. The CD spectra of DNA taken after incubation of the
complexes with CT DNA are shown in Fig. 4. In all three
cases, the intensities of both the negative and positive bands
decrease significantly. This suggests that the DNA binding
of the complexes induces certain conformational changes,
such as the conversion from a more B-like to a more C-like
structure within the DNA molecule [30–32]. These changes

are indicative of a non-intercalative mode of binding of
these complexes and offer support to their groove binding
nature [33]. The changing intensity follow the order of
3>2>1.

Cyclic voltammetry

The application of electrochemical methods to the study of
metallointercalation and coordination of metal complexes to

Fig. 6 Effect of increasing amounts of the complexes on the relative
viscosity of CT-DNA at 25.0±0.1 °C
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DNA provides a useful complement to the previously used
methods of investigation, such as UV–Vis spectroscopy
[34, 35]. Figure 5 shows the cyclic voltammograms of the
complexes at the absence and presence of DNA. It can be
seen that the cathode and anode peak currents decreased
gradually with the addition of DNA. The decrease in
current may be attributed to the diffusion of the complexes
bound to the large, slowly diffusing DNA molecule. The
decreases in the peak currents are ascribed to the stronger
binding between the complexes and DNA. In addition, the
peak potentials, Epc and Epa, as well as E1/2 had a shift to
more positive potential. The shift of the redox potential of
the complexes in the presence of DNA to more positive
values indicates a binding interaction between the complex
and DNA that makes the complexes readily reducible. The
decreased extents of the peak currents observed for the
complexes upon addition of CT-DNA may indicate that
complex 3 possesses higher DNA-binding affinity than
complex 1 and 2 do. The results parallel the above
spectroscopic and viscosity data of Nd, Sm and Eu
complexes in the presence of DNA.

Viscosity studies

Optical photophysical probes generally provide necessary,
but not sufficient clues to support a binding model.
Measurements of DNA viscosity that is sensitive to DNA
length are regarded as the least ambiguous and the most
critical tests of binding in solution in the absence of
crystallographic structural data [36, 37]. Intercalating
agents are expected to elongate the double helix to
accommodate the ligands in between the base leading to
an increase in the viscosity of DNA. In contrast, complex
that bind exclusively in the DNA grooves by partial and/or
non-classical intercalation, under the same conditions,
typically cause less pronounced (positive or negative) or
no change in DNA solution viscosity [38]. The values of (η/
η0)

1/3 were plotted against [complex]/[DNA] (see Fig. 6).
The results reveal that the complex 1, complex 2 and 3
effect relatively inapparent increase in DNA viscosity,
which is consistent with DNA groove binding suggested
above, which is also known to enhance DNA viscosity [39].
The increased degree of viscosity, which may depend on its
affinity to DNA follows the order of 3>2>1, which is
consistent with our foregoing hypothesis.

Antioxidant activity

Figure 7 depicts the inhibitory effect of the complexes on
O��

2 and OH�. The antioxidant activities of these com-
pounds are expressed as 50% inhibitory concentration (IC50

in μM). IC50 values of 1, 2 and 3 are 19.6±0.25, 15.3±0.13

and 12.5±0.12 μM, respectively. The compound 3 shows
better inhibitory effect than 2 and 1. We can also find that
all compounds scavenge OH� also in a concentration-
dependent manner. The complexes show highly active
scavenging effect on OH�. The suppression ration take the
order of 3>2>1.

It is clear that the scavenger effect on O��
2 can be by the

formation of metal–ligand coordination complexes and the
nature of the rare earth ions also affects the ability. Some
complexes we have synthesized are better effective inhib-
itor for O��

2 than that of the nitroxide Tempo (IC50=60±
3.11 M) which has been recently used in biological system
for its capacity to mimic superoxide dismutase [40, 41].
Although superoxide is a relatively weak oxidant, it
decomposes to form stronger relative oxidative species,
such as single oxygen and hydroxyl radicals, which initiate
peroxidation of lipids [42]. In the present study, the
complexes effectively scavenged superoxide in a concen-
tration-dependent manner. These results showed the com-
plexes have significant scavenging activity of superoxide
radical and clearly suggested that the antioxidant activity of
the complexes was also related to its ability to scavenge
superoxide radical.

It is clearly shown that metal complexes exhibit con-
siderable scavenging activity due to the chelation of organic
molecule to rare earth ions and rare earth ions such as La
(III), Sm(III), Eu(III) and Dy(III) exert differential and
selective effects on scavenging radicals of the biological
system. Moreover, we find that these complexes are better
effective inhibitor for OH� than that of mannitol which is
usually used as special scavenger for OH�. Therefore, the
metal complexes we studied in this paper deserve to be
further researched.

Conclusions

Taken together, a new ligand, 1-(4-aminoantipyrine)-3-
tosylurea (H2L), and its lanthanide (III) complexes have
been prepared and characterized. The DNA-binding
properties of the complex 1, complex 2 and 3 were
investigated by UV–vis absorption and fluorescence and
CD spectra, CV and viscosity measurements. Experimen-
tal results indicate that the complexes can bond to CT-
DNA take the mode of groove binding, and complex 3
have stronger binding affinity than complex 1 and 2.
Furthermore, the three rare earth complexes have active
scavenging effect on O��

2 and OH�. These findings clearly
indicate that lanthanide-based complexes have many
potential practical applications, like the development of
nucleic acid molecular probes and new therapeutic
reagents for diseases.
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